

Processing Benefits of Resonance Acoustic Mixing on High Performance Propellants and Explosives

Dr. Andrew Nelson and Tara Cross Presented at 2012 TTCP WPN TP-4 Panel Meeting

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE FEB 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	red 2 to 00-00-2012		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Processing Benefits of Resonance Acoustic Mixing on High Performance					5b. GRANT NUMBER		
Propellants and Explosives				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER				
				5e. TASK NUMBER			
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TTCP/The Technical Cooperation Program/Subcommittee,on Non-Atomic Military Research And Development, , , 8. PERFORMING ORGANIZATION REPORT NUMBER							
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)				
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
<u> </u>	OTES 37th Meeting, DTSO VPN TP-4, Energetic	0.					
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 35	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

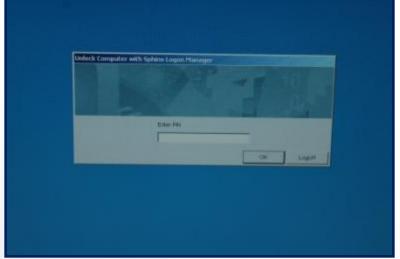
Outline

- RAM Facilities and Set-up at China Lake
- Initial RAM Energetics Evaluation
- Propellant Mixed on RAM
- Explosive Mixed on RAM

LabRAM

Resonant Acoustic Mixing of Energetic Materials at China Lake

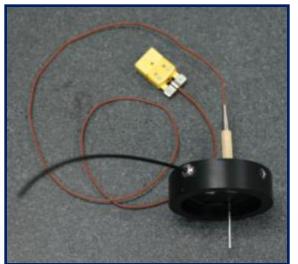
Remote Operation



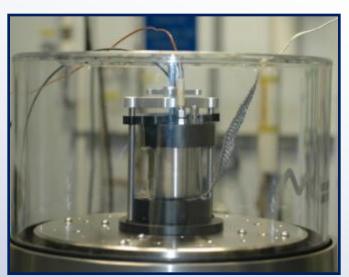
Computer Key Card Lockout



Remote Monitoring of Live Mix





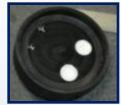

Remote Temperature Monitoring

Thermocouple lid designed by Resodyn Acoustic Mixers, Inc.

General Mix Vessel Types

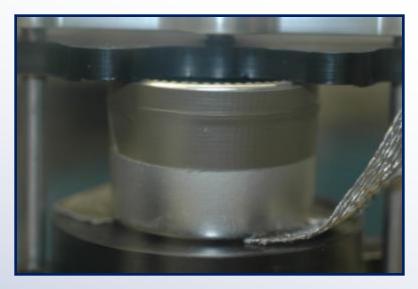
5- to 150-grams

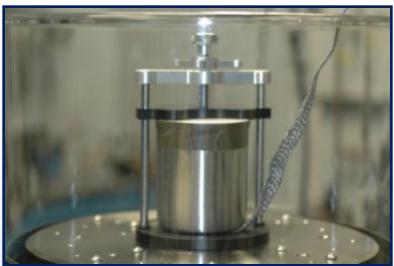
1- to 5-grams



25- to 400-grams

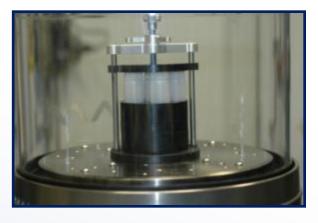
25- to 450-grams


Distribution Statement A: Approved for Public Release



Ground Mix Vessels

Mechanical grounding



Initial RAM Energetics Research

Initial Energetic Evaluation

- Selected Energetics
 - Polymers: GAP, PGN, PNO, BN-7
 - Plasticizers: BTTN, TMETN, TEGDN, BuNena
 - Nitramines: RDX, HMX, CL-20
- Developed mix matrix based on combinations of the energetic materials (1 from each group)
- Mix Vessel
 - Small 20-mL plastic vials
- Mix Sizes
 - 1-gram
 - 5-gram
- Mix Scheme
 - Ramped from 0% to 100% Intensity (I) using increments of 10% I
 - Held at 100% I for 10 minutes

Initial Energetic Evaluation

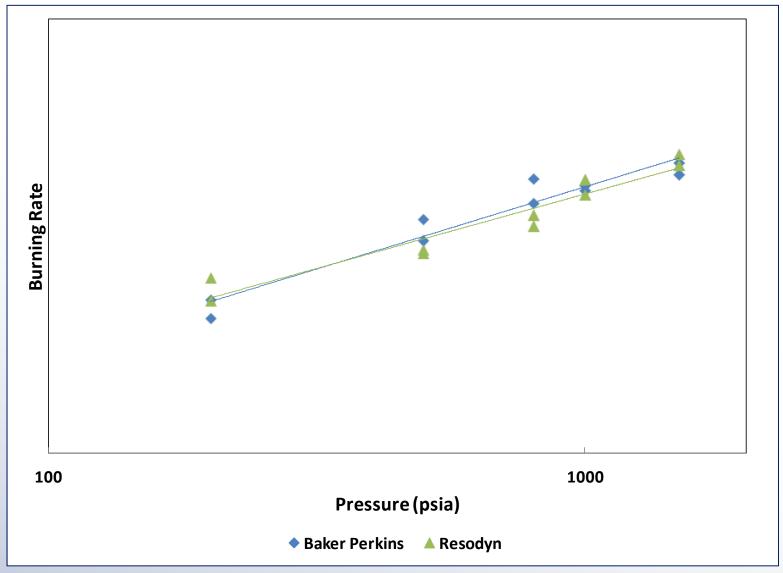
DSC Onsets for Energetics Mixed by Hand and RAM

Ingredients	HM DSC Onset (°C)	RAM DSC Onset (°C)	Difference (°C)
GAP-BTTN-RDX	206	203	3
GAP-BTTN-HMX	217	219	2
GAP-BTTN-CL20	202	204	2
PGN-BTTN-RDX	191	191	0
PGN-BTTN-HMX	183	186	3
PGN-BTTN-CL20	189	189	0
PNO-BTTN-RDX	184	189	5
PNO-BTTN-HMX	179	175	4
PNO-BTTN-CL20	185	185	0

■DSC: ambient to 350° C by ramping 5° C/min.

Resodyn Mixed Propellant

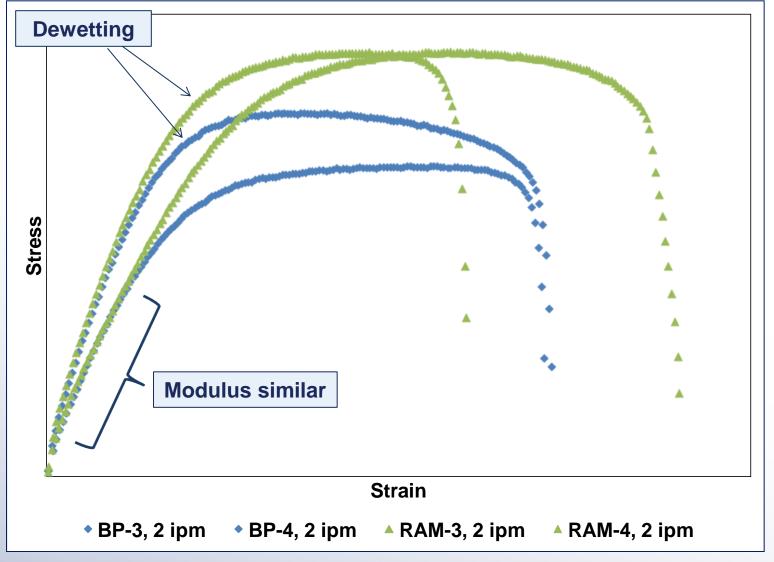
Propellant Study


- Compare the properties of a propellant formulation mixed on the Resodyn to the same formulation mixed on the Baker Perkins
 - End of Mix Viscosity
 - Ballistic Properties
 - Tensile Properties
- Formulation
 - HTCE, AP, AI
- **RAM Mix Scheme**
 - 125-gram mix
 - 4 mix periods, 40-50 G, total mix time 30 minutes, 78°F to 120°F
- Baker Perkins Mix Scheme
 - 125-gram mix
 - 7 mix periods, total mix time 100 minutes, 130°F
- End of Mix Viscosity
 - RAM: 21.5 kps at 95.9°F
 - BP: 7.5 kps at 120.7°F

15

Burning Rate Comparison

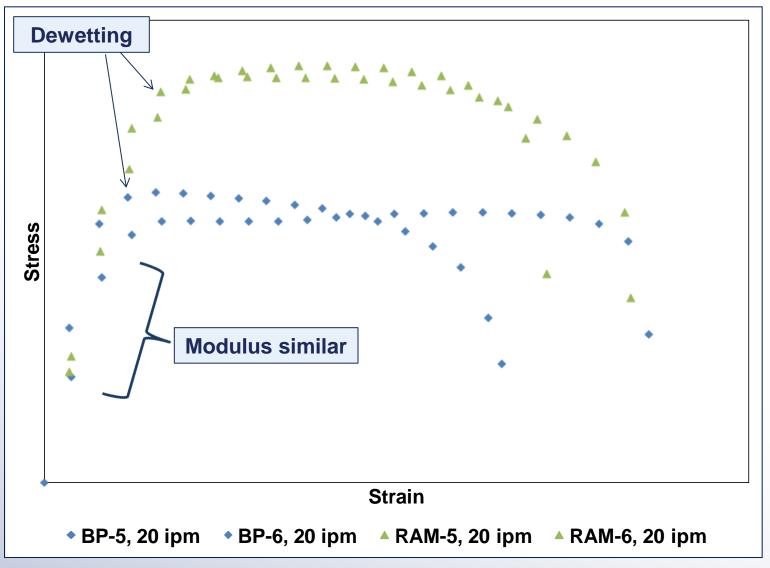
Burning Rates of Baker Perkins and Resodyn Mixed Propellants


- Low pressure window bomb data
- •Burning Rates and Burning Rate Slope are similar

NAVMAIR

Tensile Comparison

Tensile Properties of Baker Perkins and Resodyn Mixed Propellants



- Data from mini dogbones
- Pulled at RT and 2 in./min. cross-head speed
- RAM and BP samples show similar tensile properties
- •RAM demonstrated slightly greater stress

Tensile Comparison

Tensile Properties of Baker Perkins and Resodyn Mixed Propellants

- Data from mini dogbones
- •Evaluated at RT and 20 in./min. crosshead speed
- •RAM and BP samples exhibit similar tensile properties
- •RAM demonstrated greater stress

NAVMAIR

Resodyn Mixed Explosive

Explosive Formulation Study

Purpose

- Test the Resodyns ability to mix high viscosity materials by increasing the explosive particle surface area for a well known explosive formulation
 - Explosive particle surface area:
 - Baseline Mix: 0.021 m²/g
 - Mix A: 0.165 m²/g
 - Mix B: 1.65 m²/g

Motivation

- Improve solids loading to obtain higher operational performance
- Improve shock sensitivity for better IM performance
- Explosive Formulation
 - High solids filled polybutadiene binder

20

Step 1: All ingredients; Mixed at 100% intensity for 60 min.; Material Temperature -- 128° F (2 min. after mixing is complete)

Step 1: All ingredients; Mixed at 100% intensity for 60 min.; Material Temperature -- 128° F (2 min. after mixing is complete)

Step 2: Mixed at 100% intensity for 60 min.; Material Temperature -- 125° F (2 min. after mixing is complete)

Step 1: All ingredients; Mixed at 100% intensity for 60 min.; Material Temperature -- 128° F (2 min. after mixing is complete)

Step 2: Mixed at 100% intensity for 60 min.; Material Temperature --125° F (2 min. after mixing is complete)

Step 3: Mixed at 75% intensity for 20 min.

- Step 1: All ingredients; Mixed at 100% intensity for 60 min.; Material Temperature -- 128° F (2 min. after mixing is complete)
- Step 2: Mixed at 100% intensity for 60 min.; Material Temperature --125° F (2 min. after mixing is complete)
- Step 3: Mixed at 75% intensity for 20 min.
- Step 4: Mixed at 30% intensity for 10 min.

- Step 1: All ingredients; Mixed at 100% intensity for 60 min.; Material Temperature -- 128° F (2 min. after mixing is complete)
- Step 2: Mixed at 100% intensity for 60 min.; Material Temperature -- 125° F (2 min. after mixing is complete)
- Step 3: Mixed at 75% intensity for 20 min.
- Step 4: Mixed at 30% intensity for 10 min.
- Step 5: Mixed at 50% intensity for 8 min. and 20% intensity for 3 min.

Mix A: In-Situ Mixing and Casting: IHE GAP Tube

End of mix product -- uncured -- Top view (50% intensity for 8 min., 20% for 3 min.)

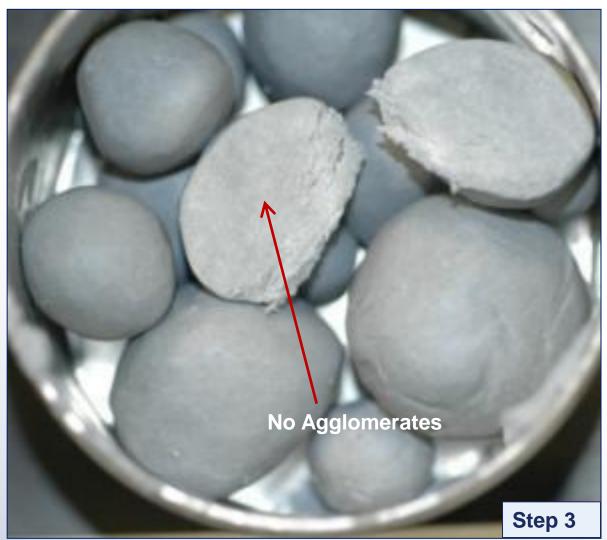
Post Cure:

Top

Bottom -

NAVMAIR

Step 1: ½ total solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed



Step 1: ½ total solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed

Step 2: All solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed

Step 1: ½ total solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed

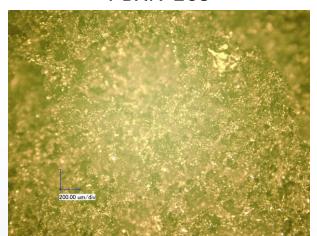
Step 2: All solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed

Step 3: Mixed at 100% intensity for 60 min.; No agglomerates observed

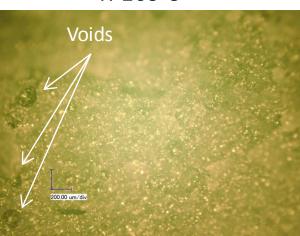
Step 1: ½ total solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed

Step 2: All solids; Mixed at 100% intensity for 20 min.;
Agglomerates observed

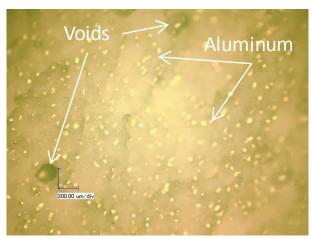
Step 3: Mixed at 100% intensity for 60 min.; No agglomerates observed


Step 4: Reduced mix vessel size;
Mixed at 50% intensity for 60
min.; No agglomerates
observed

30



Optical Microscopy


Baselipex Q_Q21 m²/g

Mix $A_{1} = 0.0365$ m²/g

Mix B_R14.65 gm²/g

- Optical images of the broken edges of explosive
- Baseline mix was processed in a planetary mixer
- RAM mixes were not processed under vacuum
- The RAM samples appear completely homogenous with no evidence of particle agglomeration

Conclusions

- Initial Resodyn energetics test indicated the energetics evaluated are not adversely affected by the RAM energy input
- Propellant ballistic and tensile properties are similar for Resodyn and Baker Perkins mixes
- RAM can be used to effectively mix extremely viscous explosive formulations
 - In-situ mixing and casting is possible in small diameter test samples
- No particle agglomeration is evident in Resodyn mixed explosive

Acknowledgements

- Jeff Roquemore
- Dave Ciaramitaro
- Brandon Ferguson
- Jennifer Dobbs
- Fred Dodson
- Suong Nguyen
- Amber Daniels
- Chris Wheeler
- Heather Simons
- Stephanie Leach

Questions